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Abstract: Novel coronaviruses (CoV) have emerged periodically around the world in recent years.
The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since
no specific therapy for these CoVs is available, any beneficial approach (including nutritional and
dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients
research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed
that has potential against CoV infection. System biology tools were applied to explore the potential
of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses.
Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG)
pathway enrichment were conducted consecutively along with network analysis. The results show
that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and
inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response
by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate
and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and
MAPK signaling pathways. All these biological processes and pathways have been well documented
in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating
immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent
the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to
validate the current findings with system biology tools. Our current approach provides a new strategy
in predicting formulation rationale when developing new dietary supplements.

Keywords: coronavirus; vitamin C; curcumin; glycyrrhizic acid; system biology; inflammatory
response; immune response

1. Introduction

Coronaviruses (CoVs) belong to the Coronaviridae virus family and are enveloped, positive-sense
RNA viruses [1]. CoVs infect various host species, including humans and other vertebrates. In recent
years, novel CoVs emerged periodically in different regions around the globe, such as severe acute
respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV)
in 2012 and SARS-CoV-2 in late 2019 [2]. These viruses predominantly cause respiratory and intestinal
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tract infections and induce various clinical manifestations [3]. Although the pathologies of these
virus are not yet completely understood, viral proteins and host factors play key roles in the infection
process [4]. A well-coordinated immune response is essential against virus infection. In contrast, an out
of control immune response is associated with immunopathogenesis and excessive inflammatory
response, which may result in poor outcomes such as severe pulmonary damage and multi-organ
failure [5,6]. Due to the challenges of developing antiviral drugs and vaccines, the outbreaks of CoV
infections often cause major public health issues [7]. CoV-infected people must rely on their own
immune defense to control the progress of infection. These diseases are classified as self-limiting
diseases, meaning that an individual’s immune function will determine whether early symptoms will
advance into severe acute respiratory tract symptoms (i.e., pneumonia) or recovery from infection.

Phytonutrients are a variety of bioactive non-nutrient plant compounds that exhibit the
capacity to alter biochemical reactions and consequently influence human health after ingestion [8,9].
Commonly known phytonutrients in dietary supplements include flavonoids, anthocyanin, carotenoids,
polyphenols, triterpenoids and phytosterols, many of which have been reported to play important
roles in human health with potential as therapeutic agents [10,11]. It is well-known that adequate
intake of nutrients and phytonutrients may help regulate immune function, including enhancing
defense and resistance to infection, while maintaining tolerance [12]. Several plant food sources,
such as acerola berry (Malpighia glabra L., M. emarginata D.C.), roxburgh rose fruit (Rosa roxburghii
Tratt.), camu camu (Myrciaria dubia (Kunth) McVaugh), amla (Phyllanthus emblica L.) and sea buckthorn
berry (Hippophae rhamnoides L.) are known as rich sources of vitamin C (VC). VC regulates immunity
by enhancing differentiation and proliferation of B- and T-cells, and it is beneficial in preventing and
treating respiratory and systemic infections [13–15]. VC potentially protects against infection caused by
CoVs due to its benefits on immune function [16]. High doses of VC were recommended for prevention
of SARS-CoV-2 infections by the Chinese Center for Disease Control and Prevention and Chinese
Nutrition Society. Currently, VC is under investigation in a clinical trial for its benefit in patients with
severe SARS-CoV-2 infection (https://clinicaltrials.gov/).

Glycyrrhizic acid (GA) is a major phytonutrient found in licorice root (Glycyrrhiza uralensis
Fisch. ex DC., G. inflata Bat., G. glabra L.), which is considered an ingredient for both food and
medicinal use in China [17]. GA exhibits anti-viral [18], anti-inflammatory [19] and hepatoprotective
activities [20]. Traditional Chinese medicine (TCM) treatments for SARS-CoV-2 infection pneumonia
were recommended by National Health Commission of China, and licorice root was one of the
commonly used TCM herbs [21]. GA has been reported recently for its binding capability with
angiotensin-converting enzyme 2 (ACE2) to prevent SARS-CoV-2 infection [22]. Intriguingly, the effect
of diammonium glycyrrhizinate combined with vitamin C tablets on common pneumonia infected
with SARS-CoV-2 is being tested in clinical trials (http://www.chictr.org.cn/).

Curcumin (CC) and its analogues are the main phytonutrients of turmeric (Curcuma longa L.) and
other Curcuma spp., which are widely used around the world as culinary spices, traditional medicine
as well as a popular dietary supplement ingredient due to its wide range of health benefits including
anti-inflammation [23], anti-cancer [24], cardiovascular regulation [25], respiratory [26] and immune
system benefits [27]. In addition, the suppression of multiple cytokines by curcumin suggested that it
may be a useful approach in treating Ebola patients against cytokine storm [28]. CC also inhibited
aminopeptidase N (APN) which was identified as a cellular receptor for alpha CoV [29].

Since VC, CC and GA are popular in nutrition, and more importantly, they have been used to
regulate immune responses and recommended to intervene in CoV infections, a combination of VC,
CC and GA (VCG Plus) was proposed for its potential to prevent CoVs infection. In the present study,
our objective is to apply system biology techniques to investigate biological processes and pathways
that are regulated by VCG Plus, and to illustrate how these biological processes and pathways could
be associated with protection against CoV infections.

https://clinicaltrials.gov/
http://www.chictr.org.cn/


Nutrients 2020, 12, 1193 3 of 17

2. Method

2.1. Gene Target Acquisition and Screening

Comprehensive determination of potential compound–target interaction profiles is a critical step for
the system biology analysis [30]. Currently, multiple databases/platforms, such as DrugBank Database,
Comparative Toxicogenomics Database (CTD), Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP) and Integrative Pharmacology-based Research Platform
of Traditional Chinese Medicine (TCMIP), were commonly applied to acquire potential targets of
small molecular compounds [31–33]. DrugBank contains detailed drug, drug-target, drug action
and drug interaction information about FDA-approved drugs as well as experimental drugs [34].
CTD provides core information on chemical-gene interactions that are manually curated from scientific
literature [35,36]. While TCMIP predicts the potential targets for herbal chemical compounds using
MedChem Studio (version 3.0), an efficient drug similarity search tool to identify herbal chemical
compounds with high structural similarity (Tanimoto score > 0.8) to known drugs [37]. Basically,
the target information in these three databases is complementary, a combination of which could provide
relatively comprehensive compound-target interactions. In this work, the target acquisition of VC,
CC and GA was conducted separately, using direct text mining of DrugBank, CTD and TCMIP with
their chemical names as keywords. The targets of VC and CC from CTD with interaction counts
less than 5 were excluded. All acquired targets of VC, CC and GA were limited to Homo sapiens and
mapped to UniProt [38] for correction to remove redundant and erroneous ones.

2.2. Hub Target Identification and Protein–Protein Interaction (PPI) Analysis

Hub targets were identified by taking following steps:
(1) Combine the targets of VC, CC and GA and remove the duplicates;
(2) Map them into the CTD website, choose “virus diseases” and “immune system diseases” gene

database for comparison, select the overlapping targets for the next analysis;
(3) Map selected targets into STRING (Version 11.0) to perform PPI analysis [39], set the cut-off

degree of PPI as high confidence (0.700), and download the information of PPI as TSV file format;
(4) Import the file to Cytoscape software (Version 3.6.1) [40] to analyze the topological parameters

of the interactions, select the hub targets whose node degree is greater than the median value. After
these steps, STRING and Cytoscape are used subsequently to construct and analyze the PPI network
of hub targets. In constructed networks, the targets are represented by nodes while the interactions
among them are represented by edges.

2.3. Distribution Analysis of Targets in Tissues/System and Gene Ontology (GO) Enrichment and Analysis

Gene ORGANizer [41] was employed to perform the target-system location analysis. DAVID
Bioinformatics Resources 6.8 [42] was applied to perform GO analysis for the hub targets. The biological
process, cell component and molecular function were three basic outputs of GO. The cut-off value
of the p-value was set to 0.05, and the p-value was adjusted using the Benjamini–Hochberg method.
In addition, the analysis of specific GO annotation involved in immune system processes was carried
out with ClueGo (Version 2.5.6) [43], a Cytoscape plug-in integrating EBI-Uniport GO annotation
database (updated in Mar 2019). Generally, the targets from VC, CC and GA were imported to ClueGo
separately and represented by different colors. The visual style of ClueGo analysis was set as “cluster”.
The GO term/pathway was added to a specific cluster term if at least 80% of genes in this term is
contributed by an individual (phyto-) nutrient. Only terms with a p-value less than 0.05 were presented
after two-side hypergenometric test and bonferroni step down adjustment were conducted.
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2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

KEGG pathway enrichment and analysis were performed on ClueGo integrating with KEGG
database (updated in 17 February 2020). The procedures were similar to the immune system process
GO term analysis, briefly described below:

(1) import the targets of VC, CC and GA to ClueGo separately, represent by different colors;
(2) set visual style as “cluster”, and set statistical method as two-side hypergenometric test and

bonferroni step down adjustment, only pathways with p-value less than 0.05 are shown;
(3) start analysis, download the protein-pathway interactions information in Excel format for analysis.

According to KEGG database, pathways are clustered into the following categories: (A) metabolism,
(B) genetic information processing, (C) environmental information processing, (D) cellular processes,
(E) organismal systems, and (F) human diseases. Finally, the top 15 protein–pathway interactions related
to immune and inflammatory responses were extracted and shown.

3. Results

3.1. Hub Target Identification and Analysis

Three public databases were used to mine the potential targets for the three (phyto-) nutrients
in VCG Plus. The number of qualified targets identified for VC, CC and GA were 109, 146, and 65,
respectively (Supplementary Table S1), and a total of 248 unique targets were identified for the
combination of VCG Plus (phyto-) nutrients. Comparing the results with “virus diseases” and
“immune system disease” gene data in CTD, it was found that 179 targets existed in both the “virus
diseases” and “immune system disease” gene database. These 179 targets were then selected to perform
PPI analysis and network topological analysis. As a result, 88 tightly connected targets (hub targets,
node degree ≥ 12) were identified for further analysis. Detailed information of the 88 hub targets is
shown in Table 1. A Venn diagram (Figure 1A) shows that 13 targets overlap for the combination of
VCG Plus (phyto-) nutrients, which include ALB, CASP3, CXCL8, HMOX1, NFKB1, NFKBIA, PTGS2,
RELA, TGFB1 NOS2, SOD2, IFNG and TNF. In addition, there are nine overlapping targets for CC and
GA, and 22 overlapping targets for VC and CC. Furthermore, the PPI of hub targets was constructed
by STRING and they are shown in Figure 1B. The PPI network was assembled by 88 nodes (targets)
and 1153 edges (interactions), with clustering coefficients of 0.59 and an average number of neighbors
of 26.21. The targets are closely connected, suggesting that they may position in similar biological
pathways with similar health benefits.

Table 1. Hub targets identified for VCG Plus. VCG Plus, the combination of vitamin C, curcumin and
glycyrrhizic acid. VC, vitamin C; CC, curcumin; GA, glycyrrhizic acid.

GENE_SYMBOL Name Distribution

EP300 E1A binding protein p300 CC only
VCAM1 vascular cell adhesion molecule 1 CC only
CCN2 cellular communication network factor 2 CC only
MYC MYC proto-oncogene, bHLH transcription factor CC only

VEGFA vascular endothelial growth factor A CC only
ADIPOQ adiponectin, C1Q and collagen domain containing CC only

IKBKB inhibitor of nuclear factor kappa B kinase subunit beta CC only
FN1 fibronectin 1 CC only
ESR1 estrogen receptor 1 CC only

MAPK8 mitogen-activated protein kinase 8 CC only
GSTP1 glutathione S-transferase pi 1 CC only

FOS Fos proto-oncogene, AP-1 transcription factor subunit CC only
AKT1 AKT serine/threonine kinase 1 CC only
IFNB1 interferon beta 1 CC only
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Table 1. Cont.

GENE_SYMBOL Name Distribution

MDM2 MDM2 proto-oncogene CC only
CXCL1 C-X-C motif chemokine ligand 1 CC only
CXCL2 C-X-C motif chemokine ligand 2 CC only
PDGFB platelet derived growth factor subunit B CC only

AHR aryl hydrocarbon receptor CC only
CYP2E1 cytochrome P450 family 2 subfamily E member 1 CC only
EGFR epidermal growth factor receptor CC only
EGR1 early growth response 1 CC only
IGF1R insulin like growth factor 1 receptor CC only
BIRC3 baculoviral IAP repeat containing 3 CC only

IGFBP3 insulin like growth factor binding protein 3 CC only
STAT3 signal transducer and activator of transcription 3 CC only
EGF epidermal growth factor CC only
IL18 interleukin 18 CC only

CCND1 cyclin D1 CC only
MMP9 matrix metallopeptidase 9 CC only

BCL2L1 BCL2 like 1 CC only
JUN Jun proto-oncogene, AP-1 transcription factor subunit CC only
IL10 interleukin 10 CC only

HMGB1 high mobility group box 1 CC_GA_intersect
IL6 interleukin 6 CC_GA_intersect

CREB1 cAMP responsive element binding protein 1 CC_GA_intersect
IFNG interferon gamma CC_GA_intersect
BDNF brain derived neurotrophic factor CC_GA_intersect
MMP2 matrix metallopeptidase 2 CC_GA_intersect
CCL2 C-C motif chemokine ligand 2 CC_GA_intersect

CASP9 caspase 9 CC_GA_intersect
AR androgen receptor CC_GA_intersect

CASP8 caspase 8 CC_GA_intersect
SIRT1 silent mating type information regulation 2 homolog 1 GA only
BMP2 bone morphogenetic protein 2 VC only
TIMP1 TIMP metallopeptidase inhibitor 1 VC only
TLR2 toll like receptor 2 VC only
SPP1 secreted phosphoprotein 1 VC only

MMP13 matrix metallopeptidase 13 VC only
NOS3 nitric oxide synthase 3 VC only

TF transferrin VC only
RUNX2 RUNX family transcription factor 2 VC only

EZH2 enhancer of zeste 2 polycomb repressive complex 2
subunit VC only

CD44 CD44 molecule VC only
HMOX1 heme oxygenase 1 VC_CC_GA_intersect

RELA RELA proto-oncogene, NF-κB subunit VC_CC_GA_intersect
TGFB1 transforming growth factor beta 1 VC_CC_GA_intersect
PTGS2 prostaglandin-endoperoxide synthase 2 VC_CC_GA_intersect

NFKBIA NF-κB inhibitor alpha VC_CC_GA_intersect
NFKB1 nuclear factor kappa B subunit 1 VC_CC_GA_intersect
CXCL8 C-X-C motif chemokine ligand 8 VC_CC_GA_intersect
SOD2 superoxide dismutase 2, mitochondrial VC_CC_GA_intersect
ALB albumin VC_CC_GA_intersect
TNF tumor necrosis factor VC_CC_GA_intersect

NOS2 nitric oxide synthase 2 VC_CC_GA_intersect
CASP3 caspase 3 VC_CC_GA_intersect
PARP1 poly (ADP-ribose) polymerase 1 VC_CC_intersect

CTNNB1 catenin beta 1 VC_CC_intersect
NQO1 NAD(P)H quinone dehydrogenase 1 VC_CC_intersect

NFE2L2 nuclear factor, erythroid 2 like 2 VC_CC_intersect
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Table 1. Cont.

GENE_SYMBOL Name Distribution

PPARG peroxisome proliferator activated receptor gamma VC_CC_intersect
IL1B interleukin 1 beta VC_CC_intersect

MAPK3 mitogen-activated protein kinase 3 VC_CC_intersect
MAPK1 mitogen-activated protein kinase 1 VC_CC_intersect

MPO myeloperoxidase VC_CC_intersect
TLR4 toll like receptor 4 VC_CC_intersect

COL1A1 collagen type I alpha 1 chain VC_CC_intersect
AGT angiotensinogen VC_CC_intersect
APP amyloid beta precursor protein VC_CC_intersect

HIF1A hypoxia inducible factor 1 alpha subunit VC_CC_intersect
CDKN1A cyclin dependent kinase inhibitor 1A VC_CC_intersect

IGF1 insulin like growth factor 1 VC_CC_intersect
SOD1 superoxide dismutase 1 VC_CC_intersect

CYP1A1 cytochrome P450 family 1 subfamily A member 1 VC_CC_intersect
BCL2 BCL2, apoptosis regulator VC_CC_intersect
TP53 tumor protein p53 VC_CC_intersect
CAT catalase VC_CC_intersect

ICAM1 intercellular adhesion molecule 1 VC_CC_intersectNutrients 2020, 12, x FOR PEER REVIEW 6 of 17 
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Figure 1. Hub target analysis of VCG Plus. A Venn diagram of hub target distribution in VC, CC and GA,
respectively (A). PPI network of 88 hub targets of VCG Plus (B). OmicsBean (http://www.omicsbean.cn/)
was employed to draw Figure 1A. Cytoscape software (Version 3.6.1) was employed to draw Figure 1B.
In Figure 1B, all the targets are represented by nodes, whereas the interaction between the targets
are represented by edges. The node size is proportional to the node degree. The intersect targets of
VC, CC and GA are represented by green. VCG Plus, the combination of vitamin C, curcumin and
glycyrrhizic acid. VC, vitamin C (group1); CC, curcumin (group 2); GA, glycyrrhizic acid (group 3).
PPI, protein-protein interaction.
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3.2. Enrichment and Analysis of Target Distribution in Tissues and Systems

We analyzed the system distribution of 88 targets to better explore the potential function on
a system level. The top 10 systems are shown in Figure 2A. The respiratory system was found as the
most significant location which contained 78 targets, followed by the urinary (74 targets), cardiovascular
(84 targets), digestive (83 targets) and immune systems (64 targets). In addition, the tissue distribution
of the targets for each (phyto-) nutrient was analyzed. The top three significant tissues of each
individual compound were shown in Figure 2B. It is interesting that targets of these (phyto-) nutrients
are all enriched in the heart. However, targets of CC are also enriched in the lung and liver, while
targets of GA are enriched in the intestine and large intestine, and targets of VC are enriched in the
peripheral nerves and coagulation system.Nutrients 2020, 12, x FOR PEER REVIEW 7 of 17 
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Figure 2. Distribution analysis of targets in tissues and systems. The bubble plots were made using JMP
software 14.2.0 (SAS institute Inc. USA). Distribution of targets of VCG Plus in system (A), distribution
of targets of VC, CC and GA in tissues (B). In Figure 2A, the bubble size is proportional to the targets
number, and the shade of bubble is inversely proportional to the p-value. In Figure 2B, the bubble size is
proportional to the targets number. The targets distribution of VC is represented by blue bubble, CC is
represented by red bubble, and GA are represented by green bubble. VC, vitamin C; CC, curcumin;
GA, glycyrrhizic acid.

CoV infections may lead to inflammation and alter immune responses, which are generally
associated with the respiratory and immune systems [4,44]. Some digestive and cardiovascular events,
such as diarrhea [45], heart palpitations [46] and abnormal coagulation parameters [47] were observed
in clinical studies, suggesting that coronavirus infection may result in systemic damage. In this sense,
the VCG Plus targets could cover most systems and tissues, indicating the potential to systematically
intervene in the process of virus infection. The results also indicate that VCG Plus may have the
potential to improve systematic immune and inflammatory responses caused by virus infections.

3.3. Enrichment and Analysis of GO Term

All enriched GO terms are available in Supplementary Table S2. The top 10 significant terms
in biological process, molecular function and cellular component categories, respectively, are shown
in Figure 3. VCG Plus is active in regulating transcription from RNA polymerase II promoter and
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transcription of DNA-templated via binding of transcription factor and chromatin. VCG Plus regulates
the apoptotic process, nitric oxide biosynthetic process and lipopolysaccharide-mediated signaling
pathway through cytokine activity, enzyme binding and/or protein binding. The biological process
result for responding to hypoxia is worth mentioning, since a decline in oxygen saturation is commonly
observed in SARS-CoV-2 infected patients [45]. The hypoxic response is a systemic process that
regulates multiple cellular activities to maintain homeostasis under hypoxic condition [48]. In the
present work, we note that both VC and CC could act on hypoxia inducible factor 1 alpha subunit
(HIF-1A), suggesting their potential benefits on maintaining homeostasis under hypoxic conditions.
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Figure 3. Top 10 gene ontology (GO) terms of biologic process, molecular function and cellular
component, respectively. The bubble plot was made using JMP software 14.2.0 (SAS institute Inc. USA).
The bubble size is proportional to the targets number, and the shade of bubble is inversely proportional
to the p-value.

In addition, GO analysis of biological processes related to the immune system was performed
using ClueGo. ClueGo was used to generate the targets-processes network of VC, CC and GA
and shown as clusters, so that the role of each nutrient contributing to pathway regulation could
be visualized (Figure 4). As a result, nine significant immune system processes were obtained,
including differentiations of macrophage, leukocyte, myeloid cell and myeloid leukocyte, activation of
macrophage and T-cell, T cell lineage commitment and hemopoiesis. These results suggest that VCG
Plus may enhance immunity by modulating the regulation of immune cell differentiation and activation.
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Figure 4. Target immune-related biologic process network. The network was constructed by ClueGo
(Latest Version 2.5.6), integrating immune process EBI-Uniport GO annotation database. Only pathways
with p < 0.05 are shown. The targets and biologic processes are represented by nodes while the
interactions among them are represented by edges. Contribution of VC (vitamin c) in targets and
pathways is represented by red, while CC (curcumin) is represented by blue, and GA (glycyrrhizic
acid) is represented by green.

3.4. KEGG Pathway Enrichment and Analysis

All 88 identified targets were imported to ClueGo for KEGG pathway enrichment, resulting in
110 statistically significant pathways (Supplementary Table S3). According to the KEGG database,
the obtained pathways are mainly concentrated on categories of signal transduction involved in
environmental information processes, immune systems involved in organismal systems, infectious
diseases involved in human diseases and other pathways. The top 15 pathways which are closely
related to immunity, inflammation and RNA virus infections, along with effective target interactions
were demonstrated in Figure 5. PI3K-AKT signaling pathway is associated with the most targets (30
targets), followed by TNF signaling pathway (25 targets), HIF-1 signaling pathway (23 targets), IL-17
signaling pathway (22 targets), NOD-like receptor signaling pathway (22 targets), Influenza A (21
targets), FoxO signaling pathway (20 targets), Toll-like receptor signaling pathway (19 targets), NF-κB
signaling pathway (17 targets) and T helper (Th)17 cell differentiation (16 targets). Other pathways
which belong to the immune system include T-cell receptor, Th17 cell differentiation and C-type lectin
receptor signaling, and inflammation-related pathways including JAK-STAT signaling and apoptosis
are also shown.
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4. Discussion

The interaction between CoV spike (S) protein and its receptor is the primary determinant for such
virions attachment to human cells [49]. Multiple peptidases have been well described as CoV cellular
receptors, including APN as the receptor for alpha CoV, angiotensin-converting enzyme 2 (ACE2) as the
receptor for SARS-CoV and dipeptidyl-peptidase 4 (DPP4) as the receptor for MERS-CoV [1]. Inhibitors
of S protein binding to receptor is a strategy for preventing and treating infection [7,50]. Although
our data did not show that VCG Plus (phyto-) nutrients act on CoV cellular receptor, the potential
capability of GA binding to ACE2 was reported recently [22]. Moreover, CC has been reported as
the inhibitor of APN with potential to be a cancer chemoprevention agent [29]. The interactions
between CC and APN, and GA and ACE2 were not included in our current analysis, mainly due to our
strict rules for target screening. Through Venn analysis of targets from VCG Plus, silent mating type
information regulation 2 homolog 1 (SIRT1) was found to only interact with GA. SIRT 1 belongs to
the sirtuin family which contains seven proteins (SIRT1-7) that are class III NAD+-dependent histone
deacetylases (HDACs) [51]. It is interesting that SIRT1 has been shown to play both pro-viral and
anti-viral roles, depending on the type of virus. The SIRT1 inhibitor showed a suppressive effect on
hepatitis B virus (HBV) replication [51,52], while the SIRT1 activator showed a suppressive effect on
human T-cell leukemia virus type 1 (HTLV-1) [53] and MERS-CoV [54]. Han [55] found that SIRT1
inhibited viral RNA transcription and translation in enterovirus 71 (EV 71, a RNA virus)-infected
human rhabdomyosarcoma (RD) cells. Based on these results, it is possible that SIRT 1 could be an
antiviral for RNA virus infections like MERS-CoV and EV 71. Containing the key phytochemical GA,
licorice is generally associated with detoxication in TCM [56], and exhibits antiviral effect [57–59].
Others have found that GA activates SIRT1 in diabetic db/db mice [60] and increases the expression
of SIRT1 in renal tubular epithelial cell line [61]. Hence, it is speculated that GA may exert anti-CoV
effects via regulating SIRT 1 protein. However, further experimental research is needed to clarify the
antivirus mechanism of GA as well as the role of SIRT1 in various CoV infections.

The innate immune system is the first line of defense against virus infection. A rapid and
well-coordinated innate immune response to sense invading viruses, and subsequent signal transduction
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pathways targeted to inhibit infection [62]. During a viral infection, host pathogen-recognition receptors
(PRRs) initially sensitized by viral pathogen-associated molecular patterns and cascades of signaling
pathways are activated to produce type 1 interferons (IFNs). IFNs are the prominent cytokines in
innate immune response, and are thought to enhance the release of antiviral proteins for the protection
of uninfected cells [5,63]. CoV can be sensed by three types of PRR, including Toll-like receptors,
retinoic acid-inducible gene I (RIG-I)-like receptors, and nucleotide-binding and oligomerization domain
(NOD)-like receptors [4]. Sometimes, accessory proteins of SARS-CoV and MERS-CoV can interfere
with PRRs, antagonize IFNs’ response and evade the immune response. The delayed IFNs’ response
may result in uncontrolled inflammatory response [64,65]. In our present study, the results demonstrate
the involvement of PRR signaling-related pathways including NOD-like receptors, Toll-like receptors
(Figure 5) and RIG-I like receptors signaling (Supplementary Table S3) pathways in the biological
functions of VCG Plus, as well as the IFNs (IFNG, IFNB1 in Table 1). Previous studies have revealed
that CC significantly stimulated the production of IFN-β (IFNB1) in mice infected with influenza A
virus (IAV), resulting in the increased survival rate and improvement of pulmonary histopathological
changes [66]. Similarly, VC improved the production of IFNα/β (IFNA1/B1), activated anti-viral immune
responses and remarkably increased the survival rate of VC-depleted mice infected with IAV [67,68].
In addition, multiple groups have demonstrated that GA improves IFN-γ (IFNG) production and
ameliorates immune function [69–71]. These results indicate that VCG Plus may be beneficial in
regulating innate immune response against invading viruses, through regulating NOD-like, Toll-like
receptor signaling pathways, and promoting the production of IFNs.

T-cells, including CD4+ cells, and CD8+ cells play an antiviral role not only by combating against
virions but also restricting the development of autoimmunity or overwhelming inflammation [4].
CD4+ cells promote the production of virus-specific antibodies via activating T-dependent B-cells,
whereas CD8+ cells kill viral infected cells [72]. However, some CoVs are thought to induce T-cell
apoptosis by the activation of apoptosis pathways [73], while depletion of CD4+ cells in later stages is
associated with immune-mediated interstitial pneumonitis and delayed clearance of pathogen [74].
In SARS-CoV-2 infected patients, both the counts of CD4 + cells and CD8+ cells in severe pneumonia
patients were lower than non-severe patients [75]. Similar results were observed in SARS-CoV infected
patients [76,77]. In our current study, the significant interactions of VCG Plus related to immune cell
differentiation and activation pathways were observed (Figure 4). The VCG Plus (phyto-) nutrients in
this combination can co-regulate T-cell activation and other related biological processes by acting on
different targets, suggesting the existence of a potential synergy. The literature has shown that VCG
Plus (phyto-) nutrients positively regulate T-cells. For instance, VC positively influences lymphocyte
development and function, and enhances T-cell proliferation and T-cell function [14,78]. CC could
target regulatory T-cells and convert them into CD4+ Th1 cells to process anti-tumor effects [79,80],
and improve the imbalance of Th1/Th2 subsets to process anti-inflammatory and anti-autoimmune
effects [27,81]. GA showed anti-allergic effect by restoring the imbalance of Th1/Th2 subsets [82,83].
These results suggest that VCG Plus could promote the proliferation of Th1 cells and the production of
virus-specific antibodies to compete CoV infections, and simultaneously regulate the Th1/Th2 subsets
to prevent autoimmune and excessive inflammatory response in the later stage of infection.

A cytokine storm, the massive overproduction of cytokines by the immune system, often appears
in the terminal stage of some viral diseases (SARS, MERS, SARS-CoV-2). It is partially responsible for
high fatality rates in patients infected with viruses [3]. In a cytokine storm, numerous pro-inflammatory
cytokines such as IL-1, IL-6 and TNF-α, and inflammatory chemokines CCL3, CCL5, CCL2, and CXCL10
are released, leading to hypotension, hemorrhage, and eventually multiorgan failure [84]. MAPKs
signaling [85], NF-κB signaling [86,87], TNF signaling [88] and PI3K/AKT signaling pathways [85,89],
play important roles in mediating CoV infection-induced inflammatory responses. As a matter of
fact, the anti-inflammatory effects of VC, CC and GA have been well documented. VC decreases
IL-4, IL-6 and IL-8 level via inhibition of NF-κB signaling pathway in concanavalin A- induced liver
injury mice [90]. Many studies have shown that CC presents anti-inflammatory function via NF-κB



Nutrients 2020, 12, 1193 12 of 17

signaling [91,92], PI3K/AKT signaling [93], MAPK signaling [66] and TLRs signaling pathways [94].
In addition, GA alleviated inflammation via NF-kB and p38/ERK pathways in the reduction in multiple
cytokines, including IL-6, TNF-α, IL-8, IL-1β and HMGB1 [95]. Consistently, the pathways mentioned
above were successfully enriched and demonstrated in our result (Figure 5). Together with the evidence
from the literature, our findings suggest that this combination may prevent the onset of cytokine storm.

VC is an essential nutrient derived from plant sources, GA is derived from licorice, which is the
most popular herb in TCM and other traditional medicine, and CC is derived from turmeric which
is the most popular botanical source for Ayurveda medicine and culinary herbs. The combination
of these three (phyto-) nutrients has not been reported previously, despite the single use of each
ingredient has been widely studied. In this study, we first collected gene targets of VC, CC and GA,
followed by target enrichment and analysis including distribution in tissues and systems, GO function
and KEGG pathways. As target acquisition is the critical step for the whole analysis, an optimized
strategy was used in our study. Briefly, we compared the targets from multiple databases, set high,
reliable cut-off values and reviewed the text description of interactions, to ensure the high credibility
of targets. In addition, we narrowed down the range by mapping to “immune system disease”
and “virus diseases” related gene databases in CTD, to ensure a more focused analysis. After step
by step system biology analysis, combined with up to date molecular mechanism investigations of
CoV infections, our results suggest VCG Plus may regulate immune and inflammatory responses to
prevent CoV infections by acting on multiple targets and pathways. Regulating NOD-like and Toll-like
receptor signaling, promoting IFNs production, inhibition of PI3K/AKT, NF-κB and MAPK signaling,
and activating and balancing T cells are the main functional mechanisms identified. In addition to the
function of the individual (phyto-) nutrients in the VCG plus, they appear to be complementary and
synergistic by modulating a variety of targets through similar or different signal pathways.

There are limitations of the current investigation. For example, the pathogenic mechanism of CoV
infection is not clearly understood yet, and the study of specific protections against CoV infections
of VC, CC and GA was very limited. We only conducted the analysis on our best knowledge at the
time. We started the analysis from known potential targets of VCG Plus, followed by enrichment
analysis of biological processes and pathways which were generally associated with the immune
system and viral infection. Based on the recent advances in the knowledge of CoV infection pathogenic
mechanism and the findings from our analysis, VCG Plus regulates CoV infection pathways and were
highlighted in our discussion. The results may not comprehensively illustrate how this combination
would help immune system defense to CoV infections, but it demonstrates the potential of VCG Plus.
In addition, the dose and route of administration of VCG or ADME were not taken into consideration
in the current work. However, technologies to enhance bioavailability have been widely studied
and indicated that advanced formulation processes could minimize these issues. Further in vitro
mechanistic and preclinical studies are warranted in order to verify the directional prediction obtained
from our current analysis.

5. Conclusions

In summary, since no specific therapy for CoV infections is available, any potential way of
protecting against CoV infections is worth studying and discussing. This paper investigated the
potential protective effect of VCG Plus against CoV infections using systems biology. Our results
suggest that VCG Plus is predicted to be helpful in regulating immune response against CoV infections
and inhibiting excessive inflammatory response to prevent the onset of cytokine storm. However,
further in vitro/in vivo experiments are warranted for validation. The analytical approach in this study
provides a new thinking process to support the formulation strategy for the development of new
dietary supplements with potential immune benefits.



Nutrients 2020, 12, 1193 13 of 17
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GO (Gene ontology) enrichment results from DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/
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